Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jacobi Polynomials, Bernstein-type Inequalities and Dispersion Estimates for the Discrete Laguerre Operator

The present paper is about Bernstein-type estimates for Jacobi polynomials and their applications to various branches in mathematics. This is an old topic but we want to add a new wrinkle by establishing some intriguing connections with dispersive estimates for a certain class of Schrödinger equations whose Hamiltonian is given by the generalized Laguerre operator. More precisely, we show that ...

متن کامل

Discrete Bernstein Inequalities for Polynomials

We study discrete versions of some classical inequalities of Berstein for algebraic and trigonometric polynomials. Mathematics subject classification (2010): 30C10, 41A17.

متن کامل

Laguerre and Jacobi polynomials

We present results on co-recursive associated Laguerre and Jacobi polynomials which are of interest for the solution of the Chapman-Kolmogorov equations of some birth and death processes with or without absorption. Explicit forms, generating functions, and absolutely continuous part of the spectral measures are given. We derive fourth-order differential equations satisfied by the polynomials wi...

متن کامل

Estimates for Jacobi-sobolev Type Orthogonal Polynomials

Let the Sobolev-type inner product 〈f, g〉 = ∫

متن کامل

On Bernstein Type Inequalities for Complex Polynomial

In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2018

ISSN: 0001-8708

DOI: 10.1016/j.aim.2018.05.038